Tuesday, December 4, 2018

Knowi Product Update - Q3 2018




We are super excited to announce that we've added Natural Language BI to the Knowi platform.  With this addition, business users gain the ability to type, in English, a query and watch as we automagically interpret the question and present the results.  It is specifically designed to provide self-service analytics capabilities to non-technical end users.  They can ask questions and get answers without an in-depth understanding of the data or how it is constructed.

There is a lot more to tell you about so keep reading!  If you're more of a visual person, you can watch the replay of our product update webinar here.

Use Your Words - Natural Language Query

Natural Language BI is a powerful way to enable self-service analytics to non-technical users by enabling them to ask questions in plain English and get to insights quickly without needing any in-depth knowledge of the data or how it was constructed.

Natural Language BI is available for all widgets within a dashboard. At the moment, it can be accessed using the Natural Language/Self Serve Analytics icon on a widget or by going into Analyze mode. 

Start typing your question in the search bar.  We use machine learning to automatically suggest the next part of the question.  When you're happy with the question, hit enter, and the results will be displayed.  Easy as pie.

Image

Users can select the chart type they want to use and save the results to their dashboard to create their custom dashboards.



Trigger Alerts Gets a New Modern Look and Feel

If you're not familiar with Trigger Alert or Trigger Notifications, they are a powerful way to trigger an action based on criteria you specify on any dataset.  Trigger Alerts allows you to monitor datasets for conditions and send alerts, invoke an API, or send a notification to a Slack Channel.  This capability allows you to get your data working for you.   Instead of business users having to go to a dashboard to gain insights, the insights are delivered to them so they can take the appropriate action. 

To create a trigger alert, go to Alerts from Setting Menu.


Image



Enterprise Security Enhancements

Knowi now supports the setting up of a connection with an LDAP server which will then allow users to login into Knowi using their LDAP credentials. If you require this functionality, please contact support.

Support for sharing the administration rights on all Dashboards, Widgets, Reports, and Alerts has now been implemented. This will allow a user to grant admin access to assets they created for the purpose of on-going administration including edits, setting Global Filters, and changing widget level Cloud9QL. 

Image

For secure embedding use cases, you can now specify a time to expire for a given share URL so the link cannot be reused beyond the expiry date.



Other Cool Stuff
Localization
The display of time series chart legends and filters can be localized for a user by selecting the Locale option under User Settings. Useful for embedded dashboard and widget modes, this will then render any time series chart selected in the locale specified. Current locales supported are English (en), French (fr) and German (de).

Run-Time Date Query Parameters
Runtime parameters can be applied to Direct queries to pass dynamic parameters into a query.  We've added the ability to pass date parameters based on input from the UI or user configuration. 

Knowi Warehouse Retention
With ElasticStore usage, the overwrite strategy provides you powerful control over how data is managed.  We've added the ability within the overwrite strategy to specify how far back you want to retain your data.  

For example, Date-1m will remove all existing rows in ElasticStore which have Date field's value less than 1 month before the MIN value of the incoming data's Date field.  You can use data retention in conjunction with other overwrite strategies.

Cloud9QL Enhancements
Knowi's Cloud9QL library has been enhanced to now include the following date delta functions :
  • MINUTES_DELTA: number of minutes between two dates
  • HOURS_DELTA: number of hours between two dates
  • DAYS_DELTA: number of days between two dates
  • MONTHS_DELTA: number of months between two dates
  • REGEX_REPLACE: regex function that can act on a field

Tuesday, July 24, 2018

Knowi Product Update - Q2 2018



Join us on Wednesday, August 8, 2018, at 10:30AM Pacific for a live demo of the new features and enhancements we've added to the Knowi platform. If you can't make the time, register anyway and we will send you the recording of the session.  In the meantime, please keep reading to see a summary of the product updates for this past quarter.

Anomaly Detection

Time-series anomaly detection is used to identify unusual patterns that do not conform to expected behavior otherwise know as outliers. There are a number of business applications for this type of machine learning. For example, IoT use cases where an unusual traffic pattern that might indicate an issue with a traffic light and business applications like detecting strange network behavior that could indicate a hack attempt.

We provide a number of anomaly forecasting algorithms within the workspace so you can determine the best one for your specific use case. To use, simply select Anomaly Detection as your machine learning option and create a new workspace. Follow the configuration steps and test out different algorithms for accuracy. The precision of the model increases over time as more data is made available.



The anomaly detection visualization itself consists of a configurable blue band range of expected values (acceptable threshold limit) along with the actual metric data points. Any values outside of the blue band range are considered anomalies and will appear in red.





Sparkly New Data Visualizations

Data Grid

You may think data grids are boring but then you haven't tried our new data grid visualization. You can do a ton with this new grid type, including formatting, conditional highlighting, sorting, grouping, and search along with the ability to download formatted grid information in Excel format.

The other pretty cool thing you can do is add charts to cells. The embedded chart options are sparkline, area, bar, spline, spline area, and pie. Not so boring anymore, right?

Knowi Data Grid with Sparkle line


Image Overlay Heatmap

You can now upload an image and overlay x, y coordinate values. Example use cases are tracking how a stadium is filling up as people are scanned at the entry gates or showing the location of IoT sensors deployed on each floor of a building.

Knowi image overlay data visualization




It's Your Dashboard - Customize It!

We enhanced the level of customization of the look and feel of your dashboards by adding several new configurable options.





Getting Clicky With It

Tightly integrating Knowi visualizations within your applications is an important step to give users a seamless experience. To further that integration, we've added an OnClick Event Handler which is available for various visualizations. You can use it to customize what action to take when a data point is clicked on the visualization.






Other Cool Stuff
Connected Charts
Added a drill down feature to allow the current dashboard to be filtered with settings based on the clicked points.

Hidden Filters
Admin or dashboard owners can now hide certain filters from end users.

REST-API Enhancements
Added epoch secs support for REST API datasource url parameters, which allows you to pass in date in epoch time formats, dynamically.

Added a way to handle the return of multiple JSON objects within the same file

Cloud9QL Enhancements
We've added an ARRAY function that creates an array with a specified grouping to return an array for the field.  We've also added  UPPER and LOWER functions to change the case of string fields.

Baseball Analytics - A Knowi Case Study

Knowi Baseball Stats Analytics

Baseball Stats and Analytics

How do Runners on Base Impact a Batter's Ability to get a Hit?


Often times what we perceive as logic contradicts reality. In psychology, this tendency of believing we know more than we actually do is known as overconfidence. Too frequently do people solely rely on their intuition and logic to make decisions rather than basing them on data and analysis. During an observational study, I discovered a contradiction between my own logical reasoning and what the data actually suggested in regards to baseball.

When considering the correlation between runners on base and batting average, you would think when runners are on base, batters will have a lower batting average than when the bases are empty.

Quick Summary of American Baseball

For those who are unfamiliar with baseball, there are three bases a runner can occupy: first, second,
and third. The goal of the offense is for the batter to hit the ball and get to first base before the defense can get them out. Once on first base, the batter becomes a runner and attempts to reach each base before running home to score. The goal of the defense is to get three outs by striking out the batter, catching the ball in the air, tagging a runner between bases, or beating a runner to the base with the ball. Batting average is a stat that measures a batter’s percentage of getting a hit by dividing a player’s number of Hits by At-bats. 

A Hit is defined as when a batter hits the ball into fair territory and then reaches first base without the defense making an error or getting a runner out. If the batter hits the ball but the defense gets a runner out but the batter is safe it is called a Fielder’s Choice and is not counted as a hit. At-bats differ from Plate Appearances, a Plate Appearance is any time a batter is up to bat, whereas an At-bat is only counted if the player gets a hit, an out, or a fielder’s choice.

The Question

Knowi Baseball Analytics Logically, it would make sense that if a runner is on base, the batter would have a lower chance of getting a hit because the defense could get the runner or the batter out. This would maximize the defense’s odds of making an out and preventing the batter from obtaining a hit. As a result, this would lead to lower batting averages when there is a runner on base, and higher batting averages when there is nobody on base.

The Data

I chose a sample size of 270 MLB players, the nine players from each team with the most plate appearances in 2017. Using Baseball Reference, I was able to collect stats on each player and created a database of 216 stats per player in Google Sheets, totaling over 62,000 data points. The sample of 270 players are only 28% of the players who had an At-bat in 2017, but they account for 74% of the season’s At-bats.

All my charts and calculations were exclusively derived from the data I collected, team statistics only use data from the 9 players sampled from that team in the calculation. I then accessed the data in Google Shets via an API using the Knowi REST-API integration in order to build queries and visualize my data. One of the advantages of using the Knowi API method to connect to my data was it allowed me to edit my spreadsheet to fix errors and add new statistics and the changes were immediately reflected in my visualizations.  Not having to upload my data every time I changed it was a huge time saver.

What the Data Shows

After collecting all of my data, I created a dashboard (click to play around with it) and visualizations using Knowi in order to make observations and analyze the data. The first visualization I created compared team batting averages when there are runners on base and when there are no runners on base. 

The results were surprising, only two teams: Philadelphia and Kansas City, had a higher team average when the bases were empty than when there were runners on base. Philadelphia was only 1 batting average point off. This means that only 6% of the teams fit my hypothesis of having a higher batting average when the bases are empty.



Next, I decided to look at a graph of the players’ averages. Only 37% of the sample of players had a higher batting average when the bases were empty compared to when there were runners on base. 

Again, the data did not fit my hypothesis. I also observed that most players had a large deviation between each of their averages. In other words, most players had either a really high average when runners were on base and a really low average when the bases were empty, and other players had the exact opposite result. 

I then created two new charts: one that only contained players who had higher averages when runners were on base which I called Group A, and one that only included players who had higher averages when the bases were empty, called Group B. By comparing the two groups to one another, I observed that players in Group A had greater deviations in their averages than players in Group B.



To model this, I created another chart where I calculated the difference between each player’s highest average and their lowest average. The top eleven players with the highest differential were all in Group A. The average deviation of Group A players was 41 batting average points and the average for Group B players was 30.
            

My Conclusion

It turns out that the results did not support my hypothesis whatsoever if anything it showed the opposite. Only 6% of the teams and 37% of players fit my hypothesis. Not only did more players have a higher average with runners on base, the players who did had a large deviation between their averages than players who did not. 

Overall, the League average for when runners are on base was .275 and when the bases were empty was .261. A difference of 14 points seems insignificant, but to put it into context, given the sample size of more than 123,000 At-bats, it results in a difference of 1,800 hits. I also tested the statistical significance of the data. Although the name can be misleading, Batting Average is actually a proportion rather than an average, so in order to conduct hypothesis testing, I would need to use the difference between two proportions formula. 

With the formula below, I came to the conclusion that with over 99% confidence, batting averages when runners on base are greater than averages when the bases are empty. Additionally, with 97% confidence, averages, when runners are on base, are higher by 10 points than when runners are not on base. 


The data clearly rejects my original hypothesis that batting averages would be higher when the bases are empty and goes as far as to provide solid evidence towards the exact opposite.

A Real-World Application

Without applying it to real life, data is useless. Using players’ situational batting averages when setting a team’s batting order can help increase the number of hits the team gets in a game, in turn leading to more runs. The leadoff hitter, the first batter in the lineup, is most likely to come up to bat with the bases empty, roughly 65% of the time. The second batter is the second most likely to come up to bat with the bases empty. By batting players with the highest average when the bases are empty in the 1 or 2 spot, those players will have a greater chance of getting a hit. However, only 47% of leadoff hitters and 24% of batters in the 2 spot have higher batting averages when the bases are empty. 

Additionally, the 4 and 3 spot in the lineup have the highest chance of coming to bat with a runner on base, so a team should put their best hitters with runners on base in those spots. A really good example of a team who bats their players in the best spots is the World Champion Houston Astros. Jose Altuve and Carlos Correa bat 3rd and 4th and when runners are on base have batting averages of .350 and .340 respectively. To put those averages into perspective let me remind you that the league overall batting average is .267. The Astros also bat either Alex Bregman or Josh Reddick 2nd, the players with the two highest averages when the bases are empty. Now compare that to a really bad example, the last place Detroit Tigers. The Tigers 4th hitter is Victor Martinez, being the 4th hitter Martinez is the most likely player on the team to come up to bat with runners on base. However, Martinez is the worst on the team with runners on base, and the second best player on the team when the bases are empty. The Tigers best hitter with runners on base is Nicholas Castellanos with an average of .341. Despite his high average with runners on base, Castellanos only has an average of .223 when the bases are empty. Castelllanos’ average drops by a whole 118 batting points when the bases are empty, yet he bats 2nd and is second most likely on the team to come to bat with the bases empty. Being able to utilize data in a way to make data-driven decisions is the most important reason to use data analytics.

Through this observational study and visualizing my data using Knowi, I was able to reshape the way I think about baseball and use real data to disprove my own logical reasoning. All it takes to bridge the gap between what you know and what you think you know is investigation, observation, and analysis. It can be done with baseball and it can be done with anything. How can data analysis transform your perception and more importantly your decision making?





Source(s):
Sports Reference LLC. Baseball-Reference.com - Major League  

Statistics and Information. https://www.baseball-reference.com/. (5/21/18)